Vibrating membrane with discontinuities for rapid and efficient microfluidic mixing.
نویسندگان
چکیده
This study presents a novel acoustic mixer comprising of a microfabricated silicon nitride membrane with a hole etched through it. We show that the introduction of the through hole leads to extremely fast and homogeneous mixing. When the membrane is immersed in fluid and subjected to acoustic excitation, a strong streaming field in the form of vortices is generated. The vortices are always observed to centre at the hole, pointing to the critical role it has on the streaming field. We hypothesise that the hole introduces a discontinuity to the boundary conditions of the membrane, leading to strong streaming vortices. With numerical simulations, we show that the hole's presence can increase the volume force responsible for driving the streaming field by 2 orders of magnitude, thus supporting our hypothesis. We investigate the mixing performance at different Peclet numbers by varying the flow rates for various devices containing circular, square and rectangular shaped holes of different dimensions. We demonstrate rapid mixing within 3 ms mixing time (90% mixing efficiency at 60 μl min(-1) total flow rate, Peclet number equals 8333 ± 3.5%) is possible with the current designs. Finally, we examine the membrane with two circular holes which are covered by air bubbles and compare it to when the membrane is fully immersed. We find that coupling between the holes' vortices occurs only when membrane is immersed; while with the bubble membrane, the upstream hole's vortices can act as a blockage to fluid flow passing it.
منابع مشابه
Waste water ammonia stripping intensification using microfluidic system
This paper reports the results of experimentally removing ammonia from synthetically prepared ammonia solution using a micro scale mixing loop air stripper. Effects of various operational parameters (such as: pH, air flow rate, wastewater flow rate and initial ammonia concentration) were evaluated. By increasing the pH from 10 to 12.25 the amount of KLa increased from 0.26 to 0.73 hr-1. A consi...
متن کاملA Rapid Micromixer for Centrifugal Microfluidic Platforms
This paper presents an innovative mixing technology for centrifugal microfluidic platforms actuated using a specially designed flyball governor. The multilayer microfluidic disc was fabricated using a polydimethylsiloxane (PDMS) replica molding process with a soft lithography technique. The operational principle is based on the interaction between the elastic covering membrane and an actuator p...
متن کاملAn Enhanced Electroosmotic Micromixer with an Efficient Asymmetric Lateral Structure
Homogeneous and rapid mixing in microfluidic devices is difficult to accomplish, owing to the low Reynolds number associated with most flows in microfluidic channels. Here, an efficient electroosmotic micromixer based on a carefully designed lateral structure is demonstrated. The electroosmotic flow in this mixer with an asymmetrical structure induces enhanced disturbance in the micro channel, ...
متن کاملDesign, Implementation, Simulation, and Visualization of a Highly Efficient RIM Microfluidic Mixer for Rapid Freeze-Quench of Biological Samples.
Rapid freeze-quench (RFQ) trapping of short-lived reaction intermediates for spectroscopic study plays an important role in the characterization of biological reactions. Recently there has been considerable effort to achieve submillisecond reaction deadtimes. We present here a new, robust, high-velocity microfluidic mixer that enables such rapid freeze-quenching. It is a based on the mixing met...
متن کاملNumerical Investigation of Fluid Mixing in a Micro-Channel Mixer with Two Rotating Stirrers by Using the Incompressible SPH Method
Fluid mixing is a crucial and challenging process for microfluidic systems, which are widely used in biochemical processes. Because of their fast performance, active micromixers that use stirrer blades are considered for biological applications. In the present study, by using a robust and convenient Incompressible Smoothed Particle Hydrodynamics (ISPH) method, miscible mix...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lab on a chip
دوره 15 21 شماره
صفحات -
تاریخ انتشار 2015